Changement nanoscopique, effet macroscopique : quand le récepteur NMDA régule l’adaptation synaptique

L’adaptation des synapses excitatrices est une des bases de la plasticité cérébrale, et implique le recrutement de récepteurs du glutamate de type NMDA. Des chercheurs de l’IINS (UMR 5297), du LP2N (Institut d’Optique), du University College London (UK), et de l’Université de Coimbra (Portugal) ont caractérisé l’organisation nanométrique de ces récepteurs aux synapses, et comment celle-ci influence leur adaptation. Publiés dans la revue Neuron, ces travaux apportent un éclairage nouveau sur les mécanismes à l’œuvre pendant l’apprentissage et la mémorisation.

En effet, les synapses glutamatergiques supportent l’essentiel des neurotransmissions excitatrices dans le cerveau et ont la capacité de s’adapter, un processus de plasticité généralement considéré comme une des bases de l’apprentissage et de la mémoire. Les récepteurs du glutamate de type NMDA (NMDAR) sont des acteurs clés de ces changements d’efficacité, et ont par conséquent été intensivement étudiés au cours des dernières décennies par manipulations génétiques ou pharmacologiques. Deux sous-types principaux de NMDAR, ceux contenant la sous-unité GluN2A ou GluN2B, influent directement sur la capacité de renforcement ou d’affaiblissement des synapses. De véritables régulateurs de l’adaptabilité des synapses excitatrices!

Néanmoins, nous n’avions jusqu’alors aucune vision de comment ces GluN2A- et GluN2B-NMDAR sont organisés au sein des synapses, de l’évolution de cette organisation au cours du développement, ni de comment cette organisation peut participer à la plasticité synaptique. En combinant des approches de microscopie de super-résolution et de d’électrophysiologie dans l’hippocampe, nous avons observé que les deux types de récepteurs sont organisés en nano-domaines distincts qui varient en nombre, surface, morphologie et localisation au cours du développement. Ces nano-domaines répondent à des mécanismes de régulation spécifiques à chaque sous-type de récepteurs impliquant des interactions avec des protéines d’échafaudage. Pour comprendre comment cette distribution nanométrique pouvait influer sur la signalisation synaptique, ils ont ensuite sélectivement désorganisé ces nano-domaines et, de manière inattendue, cela entrainait des changements bidirectionnels de la capacité d’adaptation des synapses! Ces découvertes révèlent pour la première fois que l’organisation nanométrique des récepteurs joue un rôle clé dans la plasticité des synapses. Elles apportent un éclairage nouveau sur notre compréhension des mécanismes moléculaires à l’œuvre lors des processus d’apprentissage et de mémorisation.

 

Nanoscopic change, macroscopic effect : when the NMDA receptor tunes the synaptic plasticity !

 

Glutamatergic synapses mediate most of excitatory neurotransmissions in the brain and have the ability to adapt their strength in response to salient environmental stimuli, a neuronal plasticity process that has been proposed to support learning and memory formation. NMDA glutamate receptors (NMDAR) were found to be central actors of these experience-dependent changes in transmission efficacy. Thus, they have been extensively studied over the past decades through genetic and pharmacological manipulations. These studies have revealed that two main subtypes of NMDAR can be found in the forebrain: those containing the GluN2A and those containing the GluN2B subunit, which display specific biophysical, pharmacological and signaling properties. An interesting feature of these two predominant subtypes is that their respective abundance at synapses changes along brain development or sensory experience, and directly influences the ability of synapses to strengthen or weaken.

However, how the spatial distribution of GluN2A- and GluN2B-NMDAR at synapses evolves during maturation or activity-elicited modifications, and how it may affect synaptic signaling and adaptation remained open questions. In a joint effort between researchers of IINS (University of Bordeaux/CNRS UMR 5297), LP2N (University of Bordeaux/Institut d’Optique), University College London (UK), and of the University of Coimbra (Portugal), we used super-resolution microscopy and electrophysiological recordings in hippocampal neurons to investigate the nanoscale organization of GluN2A- and GluN2B-NMDAR at synapses and how it influences their adaptation. Both receptor subtypes were found to be organized in separate nanodomains which varied in number, area, shape, and localization over the course of development. These nanodomains displayed regulation mechanisms that were specific to each receptor subtype and involved interactions with scaffolding proteins of the postsynaptic density. To explore how this finely controlled distribution may influence synaptic signaling, we then selectively disrupted the organization of either GluN2A- or GluN2B-NMDAR nanodomains. To our surprise, acting on one or the other allowed to bi-directionally influence the adaptation of synapses: while disorganizing GluN2A-NMDAR nanodomains enhanced the strengthening of neuronal connections, disrupting the organization of GluN2B-NMDAR resulted in the exact opposite! These investigations reveal for the first time that the nanoscale organization of receptors plays a key role in NMDAR signaling at synapses, and likely influences the plasticity of neuronal networks.

Pour en savoir plus

Kellermayer B*, Ferreira JS*, Dupuis J*, Levet F§, Grillo-Bosch D§, Bard L§, Linarès-Loyez J, Bouchet D, Choquet D, Rusakov DA, Bon P, Sibarita JB, Cognet L, Sainlos M, Carvalho AL, Groc LDifferential Nanoscale Topography and Functional Role of GluN2-NMDA Receptor Subtypes at Glutamatergic Synapses – Published: September 27, 2018 · DOI: https://doi.org/10.1016/j.neuron.2018.09.012

Contact chercheur

Laurent Groc

Institut Interdisciplinaire de Neurosciences

UMR5297 (CNRS/Université de Bordeaux)

146 rue Léo Saignat

CS 61292 Case 130

33076 Bordeaux Cedex

Tel: 05 33 51 47 62

laurent.groc@u-bordeaux.fr

de Contributeur 16.10.2018 à 01h14

Au delà des représentations sensorielles dans le cortex auditif primaire

Le cortex cérébral est classiquement décrit comme une chaine hiérarchique dans laquelle les aires primaires extraient et encodent les caractéristiques de bas-niveau des stimuli sensoriels, alors que les aires de plus haut-niveau représentent le sens du stimulus, en fonction du contexte et de l’environnement. Par exemple, dans le cas d’une tache de discrimination auditive, le cortex auditif primaire est sensé encoder la localisation, le timbre, la hauteur du stimulus, alors que les aires supérieure représentent le sens perceptuel du stimulus et la décision de l’animal.

Dans une étude publié dans Nature Communications, Sophie Bagur et collègues ont montré que le cortex auditif primaire encode toutefois bien davantage que les seules propriétés sensorielles des sons, et représente de manière précoce le sens du stimulus, de façon similaire au cortex frontal. Pour parvenir à cette conclusion, le groupe mené par Yves Boubenec et Srdjan Ostojic, les deux auteurs senior de cette étude, a comparé l’activité du cortex auditif du furet dans deux contextes différents : lorsque l’animal écoute passivement deux sons, et lorsqu’il discrimine de manière active les mêmes stimuli en répondant à l’un (son cible) et pas à l’autre. En analysant au niveau populationnel l’activité de l’ensemble des neurones enregistrés, les auteurs ont montré que le type de codage dépend de façon drastique du contexte. Dans le cas de l’écoute passive, l’activité représente comme attendu de façon symétrique les propriétés sensorielles des deux sons. Lors de la discrimination active, l’activité populationnelle amplifie par contre fortement le son cible, et reflète sa signification comportementale de façon analogue au cortex frontal. Ce changement induit par l’engagement dans la tâche repose en partie sur des modifications d’activité spontanée, suggérant un rôle nouveau pour celle-ci dans le codage.

Référence:

Bagur S, Averseng M, Elgueda D, David S, Fritz J, Yin P, Shamma S, Boubenec Y, Ostojic S. Go/No-Go task engagement enhances population representation of target
stimuli in primary auditory cortex. Nat Commun. 2018 Jun 28;9(1):2529. doi:10.1038/s41467-018-04839-9.

Contact chercheur:

Srdjan Ostojic

LNC2. Equipe. Network Dynamics and Computations.

Ecole Normale Superieure

29 rue d’Ulm
75005 Paris France

srdjan.ostojic@ens.fr

de Contributeur 11.10.2018 à 11h02

L’épigénétique au secours de la maladie d’Alzheimer !

La maladie d’Alzheimer (MA) est une maladie neurodégénérative affectant les fonctions de la mémoire et conduisant progressivement à une perte neuronale massive et à une démence. Il n’y a actuellement aucun traitement curatif et certains essais cliniques récents ont échoué.

L’acétylation des histones est un régulateur essentiel de la structure de la chromatine et de l’expression des gènes. Notre étude démontre un dérèglement de l’acétylation de l’histone H2B dans l’hippocampe de souris développant des lésions neurofibrillaires, l’une des composantes pathologiques de la MA. Elle apporte en outre une preuve de concept qu’un traitement in vivo avec une molécule activatrice de l’acétyltransférase CBP / p300 (CSP-TTK21) rétablit les niveaux d’acétylation de H2B dans l’hippocampe et ainsi, restaure efficacement l’activité neuronale, la plasticité et la mémoire chez ce modèle de souris.

Rétablir une plasticité dans le cerveau malade en activant la fonction acétyltransférase de CBP/p300 constituerait donc une approche thérapeutique susceptible de retarder le déclin cognitif et d’améliorer les performances mnésiques chez les patients atteints de MA.

 

Référence

Reinstating plasticity and memory in a tauopathy mouse model with an acetyltransferase activator. Chatterjee S*, Cassel R*, Schneider-Anthony A*, Merienne K, Cosquer B, Tzeplaeff L, Halder Sinha S, Kumar M, Chaturbedy P, Eswaramoorthy M, Le Gras S, Keime C, Bousiges O, Dutar P, Petsophonsakul P, Rampon C, Cassel JC, Buée L, Blum D, Kundu TK, and Boutillier AL (2018). EMBO Molecular Medicine (Accepté le 5 septembre 2018) * co-premier auteurs

Contact

 

Anne-Laurence Boutillier

Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA)

Equipe Dynamique de la mémoire & Epigénétique
UMR 7364 Unistra / CNRS
12, rue Goethe 67000 Strasbourg, France
Email : laurette@unistra.fr
Site web :http://lnca.fr/20.html

Tel: 03 68 85 19 34

de Contributeur 02.10.2018 à 02h10

Soigner l’addiction à la cocaïne avec la chirurgie !

L’addiction est une maladie psychiatrique qui se caractérise par l’émergence de certains comportements pathologiques, tels que la perte progressive de contrôle de la consommation d’une substance (en termes de dose et de fréquence de consommation). Il n’existe à ce jour aucun médicament efficace pour bloquer le développement de cette escalade de la consommation ou normaliser cette perte du contrôle de la prise de drogue, notamment dans le cas de la cocaïne. L’équipe du Dr. Christelle Baunez à Marseille avait précédemment montré chez le rat que la stimulation cérébrale profonde du noyau subthalamique (NST ; qui est utilisée avec succès depuis deux décennies chez les patients parkinsoniens) réduisait la motivation des animaux à travailler pour obtenir de la cocaïne.

Dans cette nouvelle étude, l’équipe a donc testé le potentiel de la stimulation cérébrale profonde du NST sur l’escalade de la consommation de cocaïne, que l’on observe chez le rat en lui donnant quotidiennement un accès long à la drogue (6 heures / jour, pendant deux semaines). Les chercheurs ont tout d’abord enregistré l’activité du NST au cours du développement de l’escalade, grâce aux électrodes implantées dans celui-ci. Ils ont observé une augmentation progressive de l’activité basale (en absence de cocaïne) oscillatoire de basse fréquence dans le NST, en parallèle de la perte de contrôle de la consommation de cocaïne des animaux. De façon intéressante, ce type d’activité pathologique du NST a également été observé dans la maladie de Parkinson. L’équipe du Dr. Baunez a mis en évidence que bloquer le développement de ces activités oscillatoires pathologiques en appliquant la stimulation du NST à 130 Hz a un effet préventif sur le développement de la perte de contrôle, puisque les animaux stimulés n’augmentent pas leur consommation lors de l’accès prolongé à la cocaïne. Outre les effets préventifs de la stimulation à haute fréquence du NST, les auteurs montrent également que cette stimulation peut avoir un effet thérapeutique en terme de diminution de la rechute lors d’une ré-escalade suivant une période d’abstinence.

Ces travaux menés en collaboration étroite entre des équipes de recherche de Marseille (Christelle Baunez), de Bordeaux (Serge Ahmed) et du Scripps Research Institute de San Diego-USA (Olivier George et George Koob) fournissent donc des évidences précliniques concrètes quant à une utilisation potentielle de la stimulation cérébrale profonde du NST pour réduire la consommation excessive de drogues chez les toxicomanes.

Publication

Pelloux Y*, Degoulet M*, Tiran-Cappello A, Cohen C, Lardeux S, Georges O, Koob GF, Ahmed SH, Baunez C. Subthalamic nucleus inactivation prevents and reverses escalated cocaine use. Mol. Psychiatry. 2018 (sous presse, doi : 10.1038/s41380-018-0080-y).

 

Contact :

Christelle Baunez

Institut de Neurosciences de la Timone

UMR CNRS 7289

27, blv Jean Moulin

13005 Marseille

 

de Contributeur 09h52

Semaine du Cerveau 2018

La Semaine du Cerveau sur la Côte d’Azur primée par la Fondation DANA et la FENS au Congrès de la FENS à Berlin.

A l’occasion du 11e Forum des Neurosciences de la Fédération des Sociétés des Neurosciences Européennes (FENS 2018) qui s’est tenu début juillet à Berlin, Carole Rovere et Jacques Noël, membres du comité d’organisation de la Semaine du Cerveau sur la Côte d’Azur, avec John Pusceddu, ont reçu pour l’Université Côte d’Azur, le CNRS et la Société des Neurosciences le « 2018 EDAB-FENS Brain Awareness Week (BAW) Excellence Award » attribué par The European DANA Alliance for the Brain, la Fondation DANA et la FENS en reconnaissance des programmes exceptionnels de sensibilisation du grand public qui ont été déployés cette année lors de la Semaine Cerveau sur la Côte d’Azur sur le thème du « Cerveau du futur ».

 

de Clémence Fouquet 04.09.2018 à 02h48

EBC Brain Mission – Understand, Fix and Enhance

Le 23 avril 2018, le Conseil européen du cerveau lance sa mission « cerveau ».

La mission peut paraître simple : Comprendre. Réparer. Améliorer. Mais, comme le cerveau est l’organe humain le plus complexe, les troubles cérébraux sont extrêmement compliqués à analyser, diagnostiquer et traiter par rapport à d’autres maladies. Un engagement continu et un soutien de la communauté scientifique et clinique à tous les niveaux est nécessaire. La population européenne bénéficiera des découvertes et des avancées en neurosciences qui devraient se traduire en nouveaux outils diagnostiques et traitements des troubles cérébraux.

On estime que 179 millions de citoyens européens vivent avec une maladie du cerveau. Ce chiffre couplé au coût annuel estimé de ces maladies (798 milliards d’euros) met en évidence l’immensité du problème. Aborder ces coûts majeurs pour la société européenne nécessite un effort de recherche intensifié et la création de solutions novatrices.

L’objectif de la mission « cerveau » sera de réduire cet énorme fardeau grâce à une meilleure compréhension de la physiologie du cerveau et des états pathologiques, des stratégies de prévention pertinentes, ainsi que plus généralement, une sensibilisation accrue au cerveau et à ses maladies.

En 2018, la Commission européenne devrait soumettre des propositions pour un 9ème programme-cadre orienté vers les missions et l’impact. En vue des préparatifs du prochain programme de recherche de l’UE, la mission « Cerveau » du Conseil Européen du Cerveau (EBC), soutenue par le Conseil Français du Cerveau (FBC) vise à attirer l’attention sur ces questions et à montrer comment le programme-cadre post-2020 peut faire une réelle différence pour les patients atteints de troubles cérébraux.

Le 20e siècle était le siècle de la Lune et de l’espace extra-atmosphérique ; le 21e siècle sera le siècle du cerveau.

Voir le texte du European Brain Council

 

de Clémence Fouquet 24.07.2018 à 10h26

TLR9 et GR dans la microglie : une nouvelle signalisation inflammatoire dans la maladie de Parkinson !

L’inflammation dans le cerveau est orchestrée par les cellules gliales dont font partie les cellules microgliales, macrophages du cerveau. Leur activation est présente dès les premiers stades de la maladie de Parkinson, maladie caractérisée par une perte massive des neurones dopaminergiques de la substance noire. De nombreuses études ont indiqué que les neurones dopaminergiques étaient particulièrement sensibles aux facteurs proinflammatoires. L’activation précoce et continue des microglies pourrait donc participer au processus de mort neuronale. En condition normale, la réponse inflammatoire induite par l’activation de récepteurs à la surface des cellules microgliales est finement régulée pour éviter tout dommage cellulaire. Les glucocorticoïdes (cortisol chez L’homme), via son récepteur (GR) est un acteur central de cette régulation en contrôlant l’expression des gènes inflammatoires. Or, des niveaux élevés de cortisol sont observables chez patients atteints de la maladie de Parkinson, suggérant une dérégulation de ce système et donc une potentielle implication dans cette pathologie. Dans une étude antérieure, l’équipe de Sheela Vyas avait montré l’impact délétère de l’invalidation du GR microglial sur la survie des neurones dopaminergiques dans un modèle murin de la maladie de Parkinson. Une augmentation du niveau d’expression d’un récepteur de l’immunité microglial, le TLR9, avait été notamment observée dans ce modèle murin mais également dans le cerveau de patients parkinsoniens.

Suite à ces observations, l’équipe de Sheela Vyas s’est alors questionnée sur le rôle du récepteur TLR9 dans la maladie de Parkison et si celui-ci était sous le contrôle du GR. Dans cette nouvelle étude, les auteurs révèlent la présence de la forme active du récepteur TLR9 chez les patients parkinsoniens et d’une réduction du nombre de microglies exprimant le GR, démontrant une dérégulation du GR dans ces cellules. En utilisant des souris dans lesquelles le GR est supprimé dans la microglie, des souris invalidées pour le TLR9 et des manipulations pharmacologiques, ils montrent que le GR régule étroitement l’activation du TLR9 dans la microglie. L’activation spécifique du TLR9 induit une perte des neurones dopaminergiques uniquement chez les souris n’ayant pas de GR microglial. Le GR prévient donc la signalisation inflammatoire induite par l’activation du TLR9 et protège de la perte des neurones dopaminergiques dans la substance noire dans des modèles de la maladie de Parkinson. Cette publication fournit des preuves d’une nouvelle voie contribuant à la neurodégénérescence dopaminergique impliquant la perte de la fonction du GR microgliale, créant un environnement permissif pour l’activation du TLR9 qui peut déclencher la mort neuronale dopaminergique.

 

Publication

 

Maatouk L, Compagnion AC, Sauvage MC, Bemelmans AP, Leclere-Turbant S, Cirotteau V, Tohme M, Beke A, Trichet M, Bazin V, Trawick BN, Ransohoff RM, Tronche F, Manoury B, Vyas S. TLR9 activation via microglial glucocorticoid receptors contributes to degeneration of midbrain dopamine neurons. Nat Commun. 2018 Jun 22;9(1):2450. doi: 10.1038/s41467-018-04569-y.

 

Contact chercheuse

 

Sheela Vyas

Laboratory of Gene Regulation and Adaptive Behaviors

Department of Neuroscience Paris Seine

CNRS UMR 8246/ INSERM U1130/ UPMC

Case Courrier 02

Université Pierre et Marie Curie

Bâtiment B, 2ème étage

9, Quai Saint Bernard

75252 Paris CEDEX 05, France

Courriel

 

de Contributeur 19.07.2018 à 10h26

Encodage temporel dans le réseau amygdalo-striatal

Comment le temps est-il représenté dans notre cerveau ? Pour aborder cette question, nous utilisons une tâche de conditionnement aversif chez le rat, dans laquelle un son prédit l’arrivée d’un stimulus négatif à un moment précis (par exemple, 30s après le début du son). Nous enregistrons l’activité oscillatoire de populations de neurones, via les potentiels de champ locaux, au sein d’un réseau de trois structures interconnectées : l’amygdale basolatérale (cruciale pour l’aspect émotionnel), le striatum dorsal et le cortex préfrontal (suspectés avoir un rôle dans l’estimation temporelle). La connectivité fonctionnelle/communication entre ces structures, observée au travers d’une augmentation de la cohérence de leurs oscillations respectives entre 3-6Hz, est modulée de telle sorte qu’elle encode la durée de l’attente du stimulus aversif. Cet encodage de la durée existe après seulement quelques essais d’apprentissage, alors même que l’apprentissage de l’association n’est pas complet. Ces résultats révèlent des corrélats neuronaux de l’encodage temporel, crucial pour la mémoire associative.

Auteurs : Lucille Tallot & Valérie Doyère
Neuro-PSI, CNRS UMR 9197, Cognition & Emotion, Université Paris Sud, Orsay

 

Lucille Tallot et Valérie Doyère ont présenté leurs travaux lors du FENS Forum of Neuroscience à Berlin.
Voir le communiqué de presse

de Clémence Fouquet 10.07.2018 à 04h02

Un nouveau mécanisme immunitaire mis en évidence dans la maladie d’Alzheimer

Une étude conduite par Cécile Delarasse et ses collaborateurs à l’ICM montre le rôle délétère du récepteur P2X7 et l’effet bénéfique de son inactivation dans un modèle murin de plaques amyloïdes, une des lésions caractéristiques de la maladie d’Alzheimer. Les résultats, publiés dans la revue Molecular Psychiatry, ouvrent des perspectives de recherche sur le potentiel de ce récepteur comme cible thérapeutique.

La maladie d’Alzheimer est caractérisée par la présence de lésions amyloïdes dues à des agrégats de peptides Aβ et les dégénérescences neurofibrillaires dues à l’accumulation de protéines Tau hyper-phosphorylée. Leur présence entraîne une réponse inflammatoire chronique dans le cerveau. Lorsqu’elles subissent des dommages, les cellules libèrent de l’ATP en très grande quantité. Cette forte concentration d’ATP est détectée comme un signal de danger par des récepteurs spécifiques nommés P2X7.

Un double rôle de ce récepteur, à la fois pro-inflammatoire et neuro-protecteur, a été supposé dans la maladie d’Alzheimer. Une étude conduite par l’équipe de Cécile Delarasse à l’ICM a cherché à mieux comprendre son implication dans cette pathologie. Pour cela, les chercheurs ont étudié les conséquences de l’inactivation du récepteur P2X7 dans un modèle murin de lésions amyloïdes, caractéristiques de la maladie d’Alzheimer.

Par de multiples tests comportementaux, électrophysiologiques, biochimiques et histologiques, ils montrent que l’absence du récepteur P2X7 est associée à une diminution des lésions amyloïdes et a une amélioration des fonctions cognitives et de la plasticité synaptique. Ils confirment ainsi le rôle néfaste de l’activation du récepteur dans la maladie.

« La deuxième étape a été de chercher à comprendre les mécanismes sous-jacents à ces premiers résultats. Que se passe-t-il d’un point de vue cellulaire et moléculaire au niveau de ce récepteur ? Pourquoi son absence entraine-t-elle un effet bénéfique? »

Le récepteur P2X7 s’activant dans un contexte d’inflammation et de lésions tissulaires, les chercheurs se sont intéressés aux conséquences immunitaires de son inactivation.

Ils ne montrent pas d’effet sur l’activation spécifique du système immunitaire innée : les cellules microgliales résidentes dans le système nerveux central ou le recrutement de macrophages en périphérie. En revanche, ils observent l’implication du système immunitaire adaptatif par le biais des lymphocytes T.

En l’absence du récepteur P2X7, ils observent une diminution d’expression de molécules appelées chimiokines, dont une des fonctions est d’attirer les cellules immunitaires vers un site inflammatoire, et par conséquent un plus faible recrutement de lymphocytes T dans le cerveau qui sont délétères sur les symptômes de la maladie.

« Ces résultats apportent de nouveaux éléments importants sur le rôle pathologique du récepteur P2X7 et l’effet bénéfique de son inactivation sur la pathologie amyloïde caractéristique de la maladie d’Alzheimer. Ils ouvrent des perspectives de recherche sur le potentiel de ce récepteur comme cible thérapeutique.» conclut Cécile Delarasse

Source

New role of P2X7 receptor in an Alzheimer’s disease mouse model. Elodie Martin, Majid Amar, Carine Dalle, Ihsen Youssef, Céline Boucher, Caroline Le Duigou, Matthias Brückner, Annick Prigent, Véronique Sazdovitch, Annett Halle, Jean M. Kanellopoulos, Bertrand Fontaine, Benoît Delatour, Cécile Delarasse. Molecular Pyschiatry. 2018

https://www.nature.com/articles/s41380-018-0108-3

 

Contact chercheuse

Cécile Delarasse

Institut de la vision

Paris

cecile.delarasse@upmc.fr

de Contributeur 26.06.2018 à 11h54

Un rôle clé pour les récepteurs CB1 astrocytaires et la D-sérine dans la mémoire

Les astrocytes sont des cellules gliales idéalement positionnées à la synapse pour participer de manière active à la communication neuronale. Tout comme les neurones, les astrocytes sont capables de libérer des molécules actives, les gliotransmetteurs, et par ce biais, de réguler activement la transmission, la plasticité synaptique à long terme et la mémoire. Cependant, les processus cellulaires et moléculaires à l’origine de ces fonctions astrocytaires restent largement inconnus. Cette étude, réalisée dans l’hippocampe de souris démontre que la signalisation dépendant des endocannabibnoïdes est nécessaire pour la reconnaissance d’un nouvel objet à travers l’activation des récepteurs astrocytaires aux endocannabinoïdes de type 1, communément appelés récepteurs CB1 astrocytaires. La stimulation de ces récepteurs régule la disponibilité en D-serine, co-agoniste indispensable à l’activité des récepteurs glutamatergiques de type NMDA jouant un rôle clé dans les phénomènes de plasticité synaptique et de mémoire. Ces résultats ont été obtenus grâce aux efforts coordonnés de nombreux chercheurs du Neurocentre Magendie à Bordeaux, en particulier l’équipe de Stéphane Oliet (Valentin Langlais, Aude Panatier) et de Giovanni Marsicano (Laurie Robin et José Cruz) qui ont partagé leur expertise sur les interactions neurone-glie, la D-serine, les propriétés physiologiques des récepteurs CB1 et l’analyse comportementale.

Référence

Robin LM, Oliveira da Cruz JF, Langlais VC, Martin-Fernandez M, Metna-Laurent  M, Busquets-Garcia A, Bellocchio L, Soria-Gomez E, Papouin T, Varilh M, Sherwood  MW, Belluomo I, Balcells G, Matias I, Bosier B, Drago F, Van Eeckhaut A, Smolders I, Georges F, Araque A, Panatier A, Oliet SHR, Marsicano G. Astroglial CB(1) Receptors Determine Synaptic D-Serine Availability to Enable Recognition Memory.  Neuron. 2018 Jun 6;98(5):935-944.

 

Contact chercheur
Giovanni Marsicano

INSERM U1215, NeuroCentre Magendie, 33077 Bordeaux, France
University of Bordeaux, 33077 Bordeaux, France

 

Crédit photo © Charlie Padgett

de Contributeur 19.06.2018 à 09h20