Traiter des défauts transitoires précoces retarde les signes de la maladie de Huntington chez la souris

La maladie de Huntington (MH) est due à la mutation du gène huntingtine, un gène qui s’exprime dès les premiers stades du développement embryonnaire bien que la pathologie se manifeste généralement à l’âge adulte des décennies plus tard. Nos travaux récents décrivent des anomalies transitoires du développement du cerveau dont la correction par une approche pharmaceutique empêche la pathologie à l’âge adulte.

La MH est une maladie neurologique accompagnée de symptômes psychiatriques, cognitifs et moteurs. Bien que dans la plupart des cas la maladie se manifeste à l’âge adulte, la huntingtine mutante (mHTT) altère la division des cellules progénitrices corticales, la migration neuronale et la croissance axonale des projections cortico-corticales, tous ces processus étant connus pour dépendre de l’activité des neurones. Des études sur des modèles animaux suggèrent que ce type de défauts précoces pourraient avoir un rapport avec la pathologie qui apparait à l’âge adulte : l’expression de la mHTT ou la déplétion de la HTT chez la souris uniquement pendant le développement est suffisante pour produire certains traits caractéristiques de la MH. Cela suggère qu’il existe une fenêtre de développement dans laquelle la perturbation de la physiologie cérébrale normale pourrait conduire à la pathologie de la MH. Dans ce travail, nous avons montré que la physiologie des circuits neuronaux est altérée chez les souriceaux MH. Au cours de la première semaine postnatale, les souris MH ont moins d’activité synaptique excitatrice dans les couches 2/3 du cortex que les souris de type sauvage, expriment moins de GluA1 (une sous-unité du récepteur AMPA) et présentent des déficits sensorimoteurs. Le circuit se normalise de lui-même au cours de la deuxième semaine postnatale, mais les souris adultes développent néanmoins les signes comportementaux et pathologiques de la MH. Si on interfère avec les déficits transitoires par stimulation pharmacologique de la transmission glutamatergique au cours de la première semaine postnatale, les comportement moteurs et cognitifs et la morphologie dendritique sont semblables chez les souris adultes MH traitées et les contrôles. Notre étude établit donc un lien entre le développement anormal du cerveau et la MH à l’âge adulte et montre qu’il existe une fenêtre critique précoce du développement postnatal qui pourrait représenter un intérêt pour envisager de futures thérapies.

 

Référence :

Treating early postnatal circuit defect delays Huntington disease onset and pathology in mice. Braz BY, Wennagel D, Ratié L, De Souza DAR, Deloulme JC, Barbier EB, Buisson A, Lanté F, Humbert S. Science, 2022 377:eabq5011.

 

Légende de l’illustration :

Neurone pyramidal marqué en rouge et exprimant la GFP (cyan) dans la couche 2/3 du cortex de souris
Crédit photo : Barbara Yael Braz et Sandrine Humbert
(Grenoble Institut des Neurosciences, Inserm U1216, Université Grenoble Alpes)

 

Contact :

Sandrine Humbert, Directrice de recherche INSERM

 

English summary

Huntingtin (HTT), a scaffolding protein essential for intracellular transport, is mutated in Huntington’s disease (HD), a neurological condition with psychiatric, cognitive and motor symptoms. Although in most cases HD has an adult onset, mutant HTT (mHTT) alters cortical progenitor cell division, neural migration and axonal growth of callosal projections, all processes known to be activity dependent. Animal model studies suggest that early defects like these may have something to do with later pathology: expressing mHTT or depleting HTT in mice solely during development is sufficient to produce some hallmark features of HD. This suggests that there is a developmental window in which the disruption of normal brain physiology could eventually lead to HD pathology. We showed here that neural circuit physiology is already altered in newborn HD mice. During the first postnatal week, HD mice have less cortical layer 2/3 excitatory synaptic activity than wild-type mice, express less GluA1 (an AMPA receptor subunit), and show sensorimotor deficits. The circuit self-normalizes in the second postnatal week, but the mice nonetheless develop HD. Pharmacologically enhancing glutamatergic transmission during the neonatal period, however, rescues these deficits, which in turn preserves motor behavior, cognition, and dendritic morphology in the adult mice. Our study establishes a connection between abnormal brain development and adult HD and shows that there is an early critical window of postnatal development that merits attention for future therapies.

Actualité